CROSS VENTILATION ASSESSMENT

Villawood - Stage 1

Prepared for:

Traders in Purple Governor Macquarie Tower 1 Farrer Place, Sydney NSW 2000

SLR[©]

SLR Ref: 610.30935-R01 Version No: -v1.1 August 2022

PREPARED BY

SLR Consulting Australia Pty Ltd ABN 29 001 584 612 Tenancy 202 Submarine School, Sub Base Platypus, 120 High Street North Sydney NSW 2060 Australia

T: +61 2 9427 8100 E: sydney@slrconsulting.com www.slrconsulting.com

BASIS OF REPORT

This report has been prepared by SLR Consulting Australia Pty Ltd (SLR) with all reasonable skill, care and diligence, and taking account of the timescale and resources allocated to it by agreement with Traders in Purple (the Client). Information reported herein is based on the interpretation of data collected, which has been accepted in good faith as being accurate and valid.

This report is for the exclusive use of the Client. No warranties or guarantees are expressed or should be inferred by any third parties. This report may not be relied upon by other parties without written consent from SLR.

SLR disclaims any responsibility to the Client and others in respect of any matters outside the agreed scope of the work.

DOCUMENT CONTROL

Reference	Date	Prepared	Checked	Authorised
610.30935-R01-v1.1	5 August 2022	Peter Hayman, James Clearly	Dr. Neihad Al-Khalidy	Dr. Neihad Al-Khalidy
610.30935-R01-v1.0	2 August 2022	Peter Hayman James Clearly	Dr. Neihad Al-Khalidy	Dr. Neihad Al-Khalidy

EXECUTIVE SUMMARY

SLR Consulting Australia Pty Ltd (SLR) has been engaged by Traders in Purple to assess the natural ventilation potential for the proposed Villawood - Stage 1 development. This report will use the combination of a qualitative review and a quantitative CFD assessment to assess the natural ventilation under the Apartment Design Guide (ADG). This report will form part of the development application to The City of Canterbury-Bankstown.

At least 60% of apartments are required to be naturally cross ventilated in the first nine storeys of the building. Apartments at ten storeys or greater are deemed to be cross ventilated only if any enclosure of the balconies at these levels allows adequate natural ventilation and cannot be fully enclosed.

Developments, which seek to vary from the minimum standards, must demonstrate how natural ventilation can be satisfactorily achieved, particularly in relation to habitable rooms.

Natural Ventilation Potential

The proposed development implements a number of the ADG recommendations to maximize the natural cross ventilation throughout the development.

- The proposed development has been provided with openings on multiple sides of the apartments for the majority of proposed floor plans, allowing it to make use of wind-induced natural ventilation throughout the year and thereby minimising energy costs.
- The overall depth of cross-over or cross-through units does not exceed 18 m as per the Design Criteria of Objective 4B-3.

Natural cross ventilation to many single aspect apartments can in some cases be achieved via building indentations. This is anticipated within ADG Section 4B which states in its opening paragraph that "Natural cross ventilation is achieved by apartments having more than one aspect with direct exposure to the prevailing winds, or windows located in significant different pressure regions, rather than relying on purely wind driven air".

SLR has identified further apartments that could potentially achieve natural cross ventilation through utilising building slots and recesses with windows attached. These were analysed using Computational Fluid Dynamics (CFD) numerical modelling. The CFD assessment has led to the incorporation of a number of design changes to the initial set of the architectural drawings including:

- Revised openable window areas to single aspect apartments that rely on building indentations
- Added windows to Units 303 and 304
- Operable skylight to Unit 211

The following conclusions have been reached based on a qualitative review of the floorplans of the ADG complaint dual aspect units and quantitative numerical modelling of non-dual aspect units:

• Overall, 60.6% (80 out of 132) of the apartments in the first nine levels in the development will be naturally cross ventilated.

CONTENTS

1	INTRODUCTION	5
1.1	Site and Surrounds	5
1.2	Development Description	6
2	AUSTRALIAN DESIGN GUIDE REQUIREMENTS	7
2.1	Effective Cross Ventilation	7
3	GENERAL PRINCIPLES	9
4	ASSESSMENT	LO
4.1	Qualitative Assessment	10
5	QUANTITATIVE CFD ASSESSMENT	12
5.1	CFD Results	15
6	OVERALL NATURAL VENTILATION RESULTS	17

DOCUMENT REFERENCES

TABLES

Table 1	Apartments with Openings to Support Natural Ventilation	10
Table 2	Air Changes per Hour	15
Table 3	Results Summary	17

FIGURES

Figure 1	Site Location	5
Figure 2	Elevation North	6
Figure 3	Wind-Induced Natural Ventilation via Differential Pressure	9
Figure 4	Natural Ventilation Example for the Site – Level 2	11
Figure 5	Examples of Slots and Recesses	12
Figure 6	Slot Windows	
Figure 7	Additional Openings	

APPENDICES

Appendix A Vector Flow Diagrams

1 Introduction

SLR Consulting Australia Pty Ltd (SLR) has been engaged by Traders in Purple to assess the natural ventilation potential for the proposed Villawood - Stage 1 development. This report will use the combination of a qualitative review and a quantitative CFD assessment to assess the natural ventilation under the Apartment Design Guide (ADG).

This report will form part of the development application to The City of Canterbury-Bankstown.

1.1 Site and Surrounds

The proposed sits approximately 200m southwest of Villawood Station, with the site bound by Kamira Court and Kamira Avenue to the east and west respectively. A proposed extension to Howatt Street will bound the south of the site. Surrounds of the site are predominantly low-level with there being some mid-level development immediately east of the proposed

Figure 1 Site Location

Image: Nearmap, 19 May 2022

1.2 Development Description

From the drawings provided, the proposed development will comprise a 12-storey building inclusive of:

- Ground level with residential apartments, building lobbies, communal facilities, communal outdoor space and car parking;
- Level 1 and 2 with residential apartments and car parking;
- Level 3 podium with residential apartment and communal open space;
- Level 4 to 7 with residential apartments;
- Level 8 with residential apartments and communal open space;
- Level 9 with residential apartments;
- Level 10 roof non-trafficable roof with allocation for solar panels.

Perspective View from North is shown in Figure 2.

Figure 2 Elevation North

Image: DKO

2 Australian Design Guide Requirements

The State Environmental Planning Policy (SEPP) 65 supported by the Australian Design Guide is relevant to the assessment of the natural ventilation through residential components of proposed development. Section 4B-3 of the Australian Design Guide states that:

At least 60% of apartments are naturally cross ventilated in the first nine storeys of the building. Apartments at ten storeys or greater are deemed to be cross ventilated only if any enclosure of the balconies at these levels allows adequate natural ventilation and cannot be fully enclosed.

The following points from the design guide are also noted.

- Overall depth of a cross-over or cross-through apartment does not exceed 18m, measured glass line to glass line.
- Natural ventilation to single aspect apartments is achieved with a light well or stack effect ventilation (or similar) or courtyards or building indentations have a width to depth ratio of 2:1 or 3:1 to ensure effective air circulation and avoid trapped smells.

Natural cross ventilation to many single aspect apartments is achieved via building indentations. This is anticipated within ADG Section 4B which states in its opening paragraph that "Natural cross ventilation is achieved by apartments having more than one aspect with direct exposure to the prevailing winds, or windows located in significant different pressure regions, rather than relying on purely wind driven air"

2.1 Effective Cross Ventilation

There are no specific requirements (eg air changes per hour) in the ADG guideline. However, AS1668.2-2002 "The use of ventilation and air-conditioning in buildings Part 2" states:

 Ventilation design for indoor air contaminant control (excluding requirements for the health aspects of tobacco smoke exposure)" recommends 3 air changes per hour for habitable rooms to satisfy the air quality requirements.

ASHRAE recommends that homes receive 0.35 air changes per hour but not less than 15 cubic feet of air per minute (cfm) per person (7.5 l/s/person).

The City of Sydney CoS)has provided a design guide to be used to confirm the adequacy of natural ventilation proposals in apartment buildings in that do not meet the prescriptive requirements of the Apartment Design Guide (ADG) Objective 4B-1 (eg apartments in noisy road).

- The CoS design guide requires 10 litres/second/person where the number of persons is equal to the number of bedrooms in the apartment +1 for 85% of all hours in the year for cross-through and cross-over apartments, or 90% of all hours in the year for all other apartments.
- This allows designs to deliver smaller opening sizes than required by the prescriptive design guidance of the ADG.
- The CoS design guideline also states that specific façade pressure coefficients may be determined using wind tunnel or computational fluid dynamic (CFD) testing which more accurately accounts for the surrounding features (buildings, streets, topography).

The objective of the ADG is to ensure that indoor air quality and thermal comfort is optimised, and reliance on mechanical ventilation reduced. The ADG provides design guidance to allow for effective cross ventilation well above the minimum ASHRAE or City of Sydney (Alternative natural ventilation of apartments in noisy environments) requirements.

SLR considers the 3 air changes per hour suitable to provide effective cross ventilation, reduce reliance on mechanical ventilation and satisfy the air quality requirements. The adopted air changes per hour in the current study is well above the minimum ASHRAE or City of Sydney requirements

3 General Principles

A key feature of the proposed development is the incorporation of façade openings designed to enable various spaces within the development buildings to make use of wind-induced natural ventilation throughout the year thereby minimising energy costs.

Wind-induced natural ventilation works on the straightforward principle of differential pressure. If a building envelope has multiple openings and there exists a pressure difference between those openings, e.g. the wind pressure at one opening is greater than the pressure at the other opening; airflow will be pushed through the building in the direction positive to negative.

The resulting amount of airflow through the building envelope will be a function of the magnitude of the pressure differential, the size of the various building openings and degree of "blockage" in between. These features are illustrated in **Figure 3**.

Figure 3 Wind-Induced Natural Ventilation via Differential Pressure

4 Assessment

4.1 Qualitative Assessment

The natural ventilation for the proposed residential development has been qualitatively assessed. Ventilation is achieved by the differential pressure between the different building facades. Examples of the natural ventilation principles that apply for the proposed development are shown in **Figure 4**. Full diagrams for natural ventilation can be found in **Appendix A**.

The following comments are made regarding proposed natural ventilation system for the development:

- Operable windows are provided to all façade orientations.
- Minimal shielding is expected to upper levels; therefore, the proposed development benefits from all prevailing Sydney winds, creating the potential for cross ventilation.
- Operable skylights have been proposed to apartments 207, 208, 209, 212, 213 and 214.
- Based on a qualitative study 52.3% (69 of 132) of the apartments within the proposed development comply with the cross-ventilation requirements of the Australian Design Guide for the first nine stories (Refer Table 1)

Level	Number of Apartments	No. Apartments Cross Ventilated (Qualitative)	Total (%)	Possible Apartments to be Quantitively assessed (CFD)
LG	12	5	41.7%	2
L01	10	3	30.0%	3
L02	18	11	61.1%	3
L03	16	9	56.3%	0
L04	16	9	56.3%	0
L05	16	9	56.3%	0
L06	16	9	56.3%	0
L07	16	9	56.3%	0
L08	12	5	41.7%	1
Total	132	69	52.3%	9

Table 1 Apartments with Openings to Support Natural Ventilation

Figure 4 Natural Ventilation Example for the Site – Level 2

5 Quantitative CFD Assessment

Recesses and articulations create pressure and velocity differences across the various facades and encourage cross ventilation through an increased number of apartments. From experience SLR has found that numerical solutions including Computational Fluid Dynamics (CFD) and wind tunnel studies can prove these apartments to provide appropriate through apartment ventilation and circulation, for natural ventilation requirements.

SLR has been asked to assess the apartments that connect to the "slots" of each building an example of which are shown in **Figure 5**.

Figure 5 Examples of Slots and Recesses

These recesses and articulations create pressure and velocity differences across the various facades and encourage cross ventilation through an increased number of apartments. From experience SLR has found that

numerical solutions including Computational Fluid Dynamics (CFD) and wind tunnel testing can prove that these apartments provide appropriate through apartment ventilation and circulation, for natural ventilation requirements.

A detailed computer model of the development was created based on the Architectural Drawings and CAD models supplied by Crone Architects. Representative apartments in the various Block were included for detailed numerical assessment. The Computational Fluid Dynamics (CFD) specialised software FLUENT was used to model the following wind directions.

- North east
- South east
- South
- South West
- West
- North West

Operable windows were modelled as per the provided architectural drawings and doors to balconies were assumed to be fully open.an example of the modelled window sizes is shown in the figure below.

Figure 6 Slot Windows

In each case a wind speed of 1.66 m/s was used at 10 m high. Based on actual wind data across 11 years, the average wind speed measured at Sydney Olympic Park is higher than 2 m/s at 10 m above ground 69% of the time. The numerical modelling results in this study are therefore conservative and the cross ventilation will likely increase with increasing approaching wind speeds.

Simple blocks were used for nearby surrounding buildings to include the impact of the surroundings on the natural ventilation for the proposed building. All velocities in the images are in metres per second and the simulation results are presented at a typical chest height of 1.5 metres above the floor level. This height is indicative only to show the flow around the apartment. SLR uses the modelled speeds to check there is at least three air changes per hour for each apartment.

5.1 **CFD Results**

SLR deems an apartment to have adequate natural ventilation if it shows reasonable airflow for four of the six wind directions tested. Reasonable flow means the apartment has airflow of at least three air changes per hour (at least 0.1 m/s through some areas) and shows good flow from room to room without short circuiting.

Images of the CFD results are detailed in **Appendix A** and summarised in the following tables.

Tested Apartment	North East Winds	South East Winds	South Winds	South West Winds	West Winds	North West Winds	Overall Result
005	3.1	4.3	7.4	6.2	7.6	3.9	PASS
006	5.5	4.2	5.1	6.3	1.6	7.7	PASS
103	1.6	5.0	1.7	10.3	8.0	13.6	PASS
105	6.1	9.1	4.8	14.4	15.2	13.1	PASS
106	3.2	2.1	3.9	14.4	8.4	5.9	PASS
203	2.3	5.6	2.1	6.8	4.5	15.3	PASS
205	6.9	8.3	2.1	11.2	19.8	15.2	PASS
206	4.6	2.3	3.6	12.8	10.3	6.8	PASS
809	9.7	3.5	1.4	17.2	6.2	7.0	PASS

Table 2Air Changes per Hour

Following on from the modelling SLR worked with the client on design alterations to enable additional units to pass. Units 303 and 304 were identified as candidates and windows were added to the slot between the two with an operable area of 1 m² (refer **Figure 7**). Considering the results of the modelling and the size if these units it is SLR's opinion that 303 and 304 will receive adequate ventilation with the addition of these windows.

Figure 7 Additional Openings

6 Overall Natural Ventilation Results

SLR modelled units on representative levels to gain an understanding of apartments across all levels.

Units on other levels are expected to perform in a similar manner to the nearest modelled apartment of the same layout. The overall results are shown below.

The following conclusions have been reached based on both the qualitative and quantitative numerical modelling results:

• 60.6% (80 out of 132) of the apartments will be naturally cross ventilated.

Building	Number of Apartments	No. Apartments Cross Ventilated (Qualitative)	Additional Apartments from Building slots (CFD)	Combined Total	Combined Total (%)
LG	12	5	2	7	58.3%
L01	10	3	3	6	60.0%
L02	18	11	3	14	77.8%
L03	16	9	2	11	68.8%
L04	16	9	0	9	56.3%
L05	16	9	0	9	56.3%
L06	16	9	0	9	56.3%
L07	16	9	0	9	56.3%
L08	12	5	1	6	50.0%
Total	132	69	11	80	60.6%

Table 3 Results Summary

Vector Flow Diagrams

Ground Level

Level 1

Level 2

Level 8

Passing Method

Level G Passing Method	Level 1 Passing Method	Level 2 Passing Method	Level 3 Passing Method
001 Dual Aspect	101 Dual Aspect	201 Dual Aspect	301 Dual Aspect
002 Dual Aspect	102 Dual Aspect	202 Dual Aspect	302 Dual Aspect
003 Dual Aspect	103 Pass via CFD	203 Pass via CFD	303 Qualitative Assessment
004	104	204	304 Qualitative Assessment
005 Pass via CFD	105 Pass via CFD	205 Pass via CFD	305
006 Pass via CFD	106 Pass via CFD	206 Pass via CFD	306 Dual Aspect
007	107	207 Skylight	307 Dual Aspect
008	108	208 Skylight	308 Dual Aspect
009	109	209 Skylight	309 Dual Aspect
010 Dual Aspect	110 Dual Aspect	210 Dual Aspect	310
011		211 Skylight	311 Dual Aspect
012 Dual Aspect		212 Skylight	312
		213 Skylight	313 Dual Aspect
		214 Skylight	314 Dual Aspect
		215	315
		216	316
		217	

218 Dual Aspect

Level 4 Passing Method	Level 5 Passing Method	Level 6 Passing Method	Level 7 Passing Method	Level 8 Passing Method
401 Dual Aspect	501 Dual Aspect	601 Dual Aspect	701 Dual Aspect	801 Dual Aspect
402 Dual Aspect	502 Dual Aspect	602 Dual Aspect	702 Dual Aspect	802
403	503	603	703	803
404	504	604	704	804
405	505	605	705	805 Dual Aspect
406 Dual Aspect	506 Dual Aspect	606 Dual Aspect	706 Dual Aspect	806 Dual Aspect
407 Dual Aspect	507 Dual Aspect	607 Dual Aspect	707 Dual Aspect	807 Dual Aspect
408 Dual Aspect	508 Dual Aspect	608 Dual Aspect	708 Dual Aspect	808
409 Dual Aspect	509 Dual Aspect	609 Dual Aspect	709 Dual Aspect	809 Pass via CFD
410	510	610	710	810 Dual Aspect
411 Dual Aspect	511 Dual Aspect	611 Dual Aspect	711 Dual Aspect	811
412	512	612	712	812
413 Dual Aspect	513 Dual Aspect	613 Dual Aspect	713 Dual Aspect	
414 Dual Aspect	514 Dual Aspect	614 Dual Aspect	714 Dual Aspect	
415	515	615	715	
416	516	616	716	

ASIA PACIFIC OFFICES

BRISBANE

Level 2, 15 Astor Terrace Spring Hill QLD 4000 Australia T: +61 7 3858 4800 F: +61 7 3858 4801

MACKAY

21 River Street Mackay QLD 4740 Australia T: +61 7 3181 3300

PERTH

Ground Floor, 503 Murray Street Perth WA 6000 Australia T: +61 8 9422 5900 F: +61 8 9422 5901

AUCKLAND

Level 4, 12 O'Connell Street Auckland 1010 New Zealand T: 0800 757 695

CANBERRA

GPO 410 Canberra ACT 2600 Australia T: +61 2 6287 0800 F: +61 2 9427 8200

MELBOURNE

Level 11, 176 Wellington Parade East Melbourne VIC 3002 Australia T: +61 3 9249 9400 F: +61 3 9249 9499

SYDNEY

Tenancy 202 Submarine School Sub Base Platypus 120 High Street North Sydney NSW 2060 Australia T: +61 2 9427 8100 F: +61 2 9427 8200

NELSON

6/A Cambridge Street Richmond, Nelson 7020 New Zealand T: +64 274 898 628

DARWIN

Unit 5, 21 Parap Road Parap NT 0820 Australia T: +61 8 8998 0100 F: +61 8 9370 0101

NEWCASTLE

10 Kings Road New Lambton NSW 2305 Australia T: +61 2 4037 3200 F: +61 2 4037 3201

TOWNSVILLE

12 Cannan Street South Townsville QLD 4810 Australia T: +61 7 4722 8000 F: +61 7 4722 8001

GOLD COAST

Level 2, 194 Varsity Parade Varsity Lakes QLD 4227 Australia M: +61 438 763 516

NEWCASTLE CBD

Suite 2B, 125 Bull Street Newcastle West NSW 2302 Australia T: +61 2 4940 0442

WOLLONGONG

Level 1, The Central Building UoW Innovation Campus North Wollongong NSW 2500 Australia T: +61 2 4249 1000

